
1

BLOCKCHAIN BASED SECURE METERING

SYSTEM

Final Year Project

Report by

Haseeb Saeed

In Partial Fulfillment

Of the Requirements for the degree

Bachelor of Science in Computer Science (BSCS)

School of Electrical Engineering and Computer Science

National University of Sciences and Technology

Islamabad, Pakistan (2021)

2

ACKNOWLEDGEMENTS

I am thankful to Almighty Allah for blessing me with guidance, courage, and

mindfulness throughout our lives.

I acknowledge with special thanks and appreciation to my project advisor, Dr. Syed

Taha Ali, who has been a great source of inspiration for me throughout my tenure of

final year. His knowledge and guidance made it easier for me to accomplish my goal

even in such tough times of a global pandemic, COVID-19.

Thank you.

3

TABLE OF CONTENT

ABSTRACT ……………………………………………………………………. 08

Chapter 01 ……………………………………………………………………… 09

 INTRODUCTION.………………………………………………….…… 09

 1.1 Blockchain …………………………………………………… 10

 1.2 Transactive energy system …………………………………. 11

CHAPTER 02

 LITERATURE REVIEW …………………………………….…………. 13

 Overview ……………………………………………….………… 13

 2.1 Problem statement ………………………………….………… 14

 2.2 Problem description ……………………………….………….. 14

 2.2.1 Renewable energy sources……………….………….. 14

 2.2.2 Peer to peer trading ………………………………… 15

2.2.3 Smart meter vs regular meter ……………………… 16

2.2.4 Micro grid ………………………………………17

2.3 Solution …………………………………………………. 18

2.4 Previous Work ……………………………………….. 19

2.5 Goals And Objectives ………………………………… 20

Chapter 03

 METHODOLOGY ………………………………………….………….. 21

 Overview ……………………………………………..………….. 21

 3.1 Creation Of Microgrid ………………………….…………. 22

 3.2 Deployment of Smart Contracts …………………………… 22

 3.3 Transaction Mechanics …………………………………..… 22

Chapter 04

DETAILED DESIGN AND ARCHITECTURE ……….……………. 24

 Overview ……………………………………………….……….. 24

 4.1 BREIF SUMMARY OF SOFTWARE DESIGN …………. 25

4

 4.2 DETAILED SYSTEM DESIGN ……………………………. 26

 4.2.1 Blockchain Network …………………..………….. 26

 4.2.1.1 web3.js …………………………………… 26

 4.2.2 Meta Mask ………………………………………… 27

 4.2.3 Infura …………………………………………….... 28

 4.2.4 Ropsten …………………………………….……… 29

 4.2.5 Truffle and ganache ……………………………… 29

 4.2.6 Arduino IDE ……………………………………… 30

 4.2.7 Remix IDE …………………………………..……. 30

 4.2.8 ESP32 Module ……………………………….…… 30

Chapter 05

IMPLEMENTATION OF SMART CONTRACT ……………….. 32

 Overview ………………………………………………..…… 32

 5.1 General Description of problem and solution ……..….. 33

 5.2 Stakeholders And Ecosystem ………………………..…. 33

 5.2.1 regulators …………………………………….... 33

 5.2.2 producers ……………………………………… 34

 5.2.3 consumers ……………………………………… 34

 5.3 energy transaction ……………………………………… 34

 5.3.1 Permissioned Blockchain and PoW …………. 35

 5.3.2 Smart Contracts ………………………………. 35

 5.4 Architecture and Data Flow ……………………………. 36

 5.4.1 Adding and Removing Users …………………. 37

 5.4.2 Sell Advertisements ……………………………. 37

 5.4.3 Buy Offers …………………………….……….. 38

 5.4.4 Micro Grid …………………………….………. 38

 5.5 PAY-AS-YOU-GO PEER TO PEER PAYMENT …….. 39

Chapter 06

DEPLOYMENT OF SMART CONTRACTS VIA ESP32 ……………. 41

Overview ………………………………………………………..… 41

5

6.1 ESP32 MODULE …………………………………………..… 42

 6.1.1 Hardware Specifications ………………………..…. 42

 6.1.2 Why ESP32 …………………………………….....… 42

6.2 Blockchain with IoT ……………………………………..….... 42

6.3 Execution of Proposed System …………………………..…… 43

 6.3.1 Addition and Removal of Users ……………….……. 43

 6.3.2 Deployment of Smart Contract …………………….. 45

 6.3.3 User Hash …………………………………………..... 45

 6.4.4 Transfer Completion ……………………………...… 45

Chapter 07

EVALUATION OF PROPOSED SOLUTION ……………………….

 Overview

Chapter 08

CONCLUSION AND FUTURE WORK ………………………………... 48

 Overview …………………………………………………………... 48

 8.1 Conclusion………………………………………………….….. 50

 8.2 Limitations ………………………………………………….…. 50

 8.2 Future Work …………………………………………………… 51

REFERENCES……………………………………………………… 52

6

LIST OF FIGURES

Fig 1: World gross electricity production, by source, 2018 ………………………………11

Fig 2: Net public electricity generation in Germany in a week …………..………… 16

Fig 3: comparison between regular meters and smart energy meters ………………. 18

Fig 4: Micro grid with a central control system ……………………………………. 19

Fig 5: transaction of energy among local neighbors ……………………………….. 20

Fig 6: Blockchain based transactive energy system ……………………………….. 24

Fig 7: web3.js interacting with a private blockchain via INFURA ……………….. 27

Fig 8: meta mask user wallets ……………………………………………………… 28

Fig 9: initial account balance before transaction …………………………………… 29

Fig 10: infura as a developer friendly platform …………………………………….. 30

Fig 11: ESP32 wi-fi module ……………………………………………………… . 32

Fig 12: block diagram of users’ function ………………………………………….. . 37

Fig 13: Flowchart of the Micro grid system …………………………………………40

Fig 14: hierarchy of Users ………………………………………………………….. 44

Fig 15: Ropsten Test network; new contract window ……………………………… 45

Fig 16: Remix: Deployment of smart contract ……………………………………… 46

Fig 17: Hash Functions of Producer and Consumer …………………………………47

Fig 18: Change in Account balances after the deployment of the smart contract ……47

7

ABSTRACT

Like other commodities, electricity is now a part of our day-to-day life and we cannot

neglect its importance. The conventional methods of electricity production such as using

coal, oil and natural gas for steam run generators have been proved very harmful for the

environment. Use of such non-renewable energy resources for energy generation is

responsible for green gas emissions and air and water pollution. This has led mankind

to move towards the other environment friendly alternatives, renewable energy

resources like solar and wind energy. Professionals around the world are busy designing

and manufacturing the equipment and tools for energy generation using such resources.

Generation is now considered a task we can claim our command on. But energy trading

is still a problem. The energy regulation departments require a smart network for peer-

to-peer transactions that requires no centralized authority. Learning from the growth

pattern in last decade, blockchain has proved to be the most suitable and revolutionized

concept. Setting aside its scope in cryptocurrencies, the idea of smart contracts has

proved helpful in connecting blockchain to other tracking systems such as drugs and

medicine tracking, insurance systems, real estate, food tracking, drugs and medicine

tracking etc. Acknowledging the pattern of energy transactions via regulatory

authorities, a blockchain based secure metering system is introduced. This solution

ensures that no central authority is required to regulate the energy transactions between

peers. A secure and completely transparent system is introduced for consumers and

prosumers with an active microcontroller that monitors and regulates the consumed and

produced energy units.

8

9

Chapter 01

INTRODUCTION

With each technological breakthrough in modern era, we encounter various

problems each day. Some problems are so common and iterative that

people have adapted to them but it still requires a solution. With energy

thefts being a recursive and most common problem these days, it cannot be

ignored. Solving such problems effectively is what paves our way towards

a safe, smart and digital world. One such problem is being dealt with

through our project, ‘blockchain based secure metering system’.

Electricity is a modern-day necessity to survive and thus is available to

everyone at both domestic and industrial level. After its invention and

transmission through cables, the next milestone was generation and

transmission of electricity at macro level that could be supplied to an entire

city. The engineers, researchers and physicists put their lives in discovering

the most reliable resources of electricity production. They came up with

today’s most commonly used resources i.e., fossil fuels. Fossil fuels include

petroleum, coal and natural gas. Combustion of fossil fuel runs the

generators responsible for energy production. This mode of production has

proved to be hazardous for the environment in several ways. It has mainly

caused air pollution and production of green gases contributing to global

10

warming and sudden climate changes. Other notable factor is water

pollution that is contaminating oceans and aquatic life. Another alternative

for energy production is via nuclear energy. Nuclear is world’s second

largest resource producing nearly 11% of total electricity preceded by coal

and natural gas that contributes about 60% of total electricity production

sources (fig 1).

Fig 1: World gross electricity production, by source, 2018

Source: IEA.org

1.1 BLOCKCHAIN

Blockchain is a fairly new word in this world of technology. It has

11

existed since 1991 but there was no acceptance for it back in the days

and it had failed miserably. But later on with the passage of time, the

need of hour realized its importance and it was relaunched by the

owners again in 2009. Introduction of bitcoin and other

cryptocurrencies paved their way through the economic system in the

same decade that made blockchain more important. Blockchain has

made transactions easy, secure and easier to verify. Notable features are

anonymity, reliability and non-repudiation. It allows the prosumer and

consumer to communicate in an authentic way without any violations in

privacy protocols.

1.2 TRANSACTIVE ENERGY SYSTEM

TES is a newly established mechanism in electric power system that

allows different control agents to use distributed generation units in

order to engage in energy transactions and provide necessary services. It

improves the reliability of a certain energy system. With the increasing

trend of distributed energy resources such as rooftop photovoltaic solar

units and wind turbines, TES is the best possible solution. Such a

system requires a secure, foolproof and reliable platform for its

implementation. And blockchain is one such technology that handles

the energy transaction between consumers and prosumers in best way.

Hence blockchain based secure energy metering system is a well-

defined and comprehensive solution that provides complete authority of

transactions to prosumers and consumers. The proposed project

encourages the prepaid cryptocurrency based billing system and also

promotes the green energy sources.

This technology enables the consumer to become the prosumer and vice

versa. Consumer is defined as the primary user of the generated energy.

Prosumer is a consumer that both generates and consumes energy and has

12

its own energy generation units installed. Blockchain makes it easier for the

prosumer to trade its locally generated energy with other consumers or a

distribution company at a central/ national level.

In our project report, we will explain solution for energy thefts and

centralized, unauthorized systems using blockchain based metering and

transactive system in detail. This introduction is followed by a

comprehensive literature review of some research papers we studied to get

a better insight of blockchain world. This report extends by explaining the

methodology, solution and possible future work.

13

Chapter 02

LITERATURE REVIEW

OVERVIEW

This chapter explains the precap of research work done before proceeding with

the practical implementation of project. The chapter starts with a general and

concise problem statement followed by a comprehensive problem description. It

includes a proposed solution to the explained problem in a bird’s eye view. At

the end of this chapter, the main objectives and goals of the project are

mentioned.

14

2.1 PROBLEM STATEMENT

With the increased use of green energy sources, arises the need of a

decentralized network instead of in practice centralized transaction network

which encourages consumer and prosumer to trade among themselves.

Our target is to provide a platform that promotes peer to peer transactions

between consumers and prosumers and encourage smart, secure and digital

solutions to energy crisis we are facing globally and locally.

2.2 PROBLEM DESCRIPTION

Blockchain based secure metering system aims at addressing following

issues in detail.

2.2.1 Renewable energy sources

Globally, owing to air pollution and other air borne issues caused by

energy production using fossil fuel burning, a general trend of shifting

towards RES started. This encouraged people to install solar panels and

wind turbines (at coastal areas) to contribute for their share in conservation

of environment. The growing trend of using solar energy to its full

potential is quite evident through a figure explaining net electricity

generation in Germany in a week. This says almost 25 % of total electricity

produced was via solar panels (fig 2). There are numerous cases where

individuals have installed Solar panels in their own capacity and are able

to produce enough electricity for their own use, sometimes more than the

15

required amount. This surplus is either stored in the batteries or sent back

to the grid. It may occur to some individuals that they want to trade this

extra energy in their neighborhood for money. This is where arises the

need for peer-to-peer energy trading systems. The continual usage of such

technologies raised the need for a proper system that can give the two

trading parties complete autonomous control of trading between them.

Currently, taking an example from Pakistan, NEPRA is the most active

regulatory authority which generates licenses for such traders and other

DISCOs act as a central body.

Fig 2: Net public electricity generation in Germany in a week

Source; Fraunhofer institute for solar energy systems ISE

2.2.2 Peer to peer trading

With smart and continual usage of RES, the number of solar panel users is

increasing. Such users generating their own energy are called prosumers

16

who both consume and produce the energy. Sometimes, even after the

required consumption of energy, some surplus amount is produced. This

energy can go to waste if not handled properly. One option is to store

energy in high power batteries. This option is reliable yet less practiced as

the batteries cost way too much. A more beneficial and yielding alternative

is peer-to-peer transactions via smart metering systems.

According to this solution, the surplus energy is transferred back to the

central authority or grid. Prosumer produces its own energy in daytime

when solar panels are functional and at night, energy from the distributing

companies is consumed. The surplus sent to grid is net metered with the

energy consumed during night hours and an electricity bill is generated.

This electricity bill has negative or positive balance as per energy

consumption. This entire process is controlled and monitored by NEPRA

in Pakistan and is called net-metering [1]. Many people have benefited

through this system so far.

With such advancements, people started to realize the need of a

decentralized network that allows them to transact energy among their own

neighborhood without involving any centralized third party or grids.

During last decade, many solutions have been proposed using a microgrid.

2.2.3 Smart meter vs regular meter

A smart meter can be defined as an electricity meter that measures

electricity units and displays them digitally. It provides the user with a

precise and accurate energy consumption reading with regular intervals of

thirty minutes or one hour.

A regular meter is the one in which unlike a smart meter, energy readings

are noted manually and hence are less accurate. Such readings are taken

every month or after 3 months. This reduces the reliability of metering

17

system.

These days, due to advancements in energy and regulatory sectors, a newer

concept of two-way meters is introduced. Such meters came into existence

after net-metering became a common practice.

Fig 3: comparison between regular meters and smart energy meters

2.2.4 Micro grid

A microgrid is shrunk version of larger and conventional grids. It works

for a certain small geographic area. A microgrid requires its own energy

production resources such as solar panels. Generally, a microgrid is

connected to a larger grid where the energy produced by microgrid is fed,

or it is transferred to certain allocated consumption points using main

grid’s power lines. When the macro grid is non-functional due to repairing

purposes, microgrid can work on its own. Such a process is called the

Islanded mode.

18

Fig 4: Micro grid with a central control system

2.3 SOLUTION

Keeping in view the advancements in digital world and energy sector, we

have proposed a smart and secure solution to above mentioned problem. This

not only encourages the people to shift towards the RES but also contributes

to a modern and digitized world. The proposed metering system keeps a

check of available energy units and cryptocurrency in a digital wallet. During

a certain transaction, only the two trading parties know about the transactions

and details ensuring a secure and transparent platform. After the transaction

is held, a detailed receipt /history of transaction can be seen on wallet. The

distributed energy network is a system that is adopted by the energy

distribution companies to minimize the energy losses hence improving

energy efficiency.

19

Fig 5: transaction of energy among local neighbors

2.4 PREVIOUS WORK

To find an appropriate solution to the above mentioned problem, we went

through a lot of scholarly articles and research papers in addition to less

mentioned blog posts and GitHub commits. This technology is not a traditionally

practiced method in billing world hence not much of work was done previously.

Although some of the developed countries as Germany, new Zealand and

Australia have this technology being used to its full potential but it may take

sometime for developing country like ours to deploy such efficient mechanisms.

A blockchain based metering and billing system like this was proposed already

which paved an easier path for our work. [2]

20

2.5 GOALS AND OBJECTIVES

A blockchain based secure metering system designed in this project that aims to

fulfil following objectives,

1- Encourage the masses towards RES for energy production.

2- Provide a complete and secure solution for transactions.

3- Establish a blockchain network.

4- Establish a cryptocurrency (ether in this case)

5- Design a Power Grid

6- Interfacing PowerGrid with blockchain network

21

Chapter 03

METHODOLOGY

OVERVIEW

This chapter proceeds by explaining the complete methodology and steps

followed to achieve the desired goal. All the steps involved are clearly

explained in detail and the result achieved after every step is also

mentioned. The first step is creating a microgrid. Then the transaction

between peers takes place. The chapter proceeds by explaining the overall

methodology through a block diagram.

22

3.1- CREATION OF MICROGRID

A microgrid is a basic level implementation on micro scale that allows

large number of prosumers and consumers to carry out transactions with

a smart control that monitors all the transactions. In this project only

one prosumer and one consumer is created for the demo purpose. The

produced and consumed number of energy units and analogous amount

of cryptocurrency is monitored by the microcontroller. The blockchain

network used in this project is ‘Ethereum’ and the cryptocurrency use is

‘ether’.

3.2- DEPLOYMENT OF SMART CONTRACTS

A smart contract is deployed using remix (a solidity IDE). This

provides a mutual platform for both the transacting parties with a

certain set of terms and conditions. Smart contract is a transaction

protocol which is automatically executed and controls / documents the

events which are legally relevant. This step is discussed in further

detail in upcoming chapters. This is the most basic and important part

of our project.

3.3- TRANSACTION MECHANICS

In this project, a microgrid level prototype is created to give a better and

clear insight of a blockchain based transactive energy system. This can

be explained figuratively in a better way (refer to fig.). Such a power

microgrid can be referred as a cyber-physical system. A network layer

is created that is basically Ethereum (a private block chain system).

Generally, a power micro grid consists of a source of energy (sun), solar

panel, battery, microcontroller, load and a two way meter. These two-

way meters are a common practice these days with the introduction of

net-metering. The network layer consists of a complete Ethereum node

23

that would be run on laptop and four wallets, one for producer one

consumer, and one for each regulator and owner.

Fig 6: Blockchain based transactive energy system

24

Chapter 04

DETAILED DESIGN AND ARCHITECTURE

OVERVIEW

This chapter discusses in detail the design and architecture of the project. The

project is divided into substages for ease of understanding. This is a four step

process explained in detail. As this project is completely software based, this

chapter explains all the software resources. Each software interface has its

own uses, advantages and disadvantages that are explained below.

25

4.1 BREIF SUMMARY OF SOFTWARE DESIGN

Our software design is divided into 4 basic parts. All of these contributing to

the final product.

1- Blockchain network (Ethereum)

2- Smart contracts

3- Transactive energy system

4- Testing

As a very initial task, main node of blockchain was set up. For this purpose,

we used web3.js .

Once after the node is up and running, smart contracts were deployed using

meta mask (crypto wallet).

The next step was using these smart contracts to run a transaction and get a

transactive system running. Public nodes were accessed through public API

using Infura.

All of the created smart contracts and information is deployed in a network

via Ropsten. Ropsten is a proof-of-work testnet that most closely resembles

the current Ethereum blockchain.

The above explanation gives a very brief gist of entire project which will be

explained in detail later on in this report.

26

4.2 DETAILED SYSTEM DESIGN

The software methodology already mentioned in section 4.1 will be

discussed in detail here. Following section will explain all the software

resources used in detail.

4.2.1 Blockchain Network

4.2.1.1 web3.js

Web3.js is a collection of libraries that allows the user to interact with

some local or remote Ethereum node using IPC, HTTP or WebSocket.

It enables the user to employ the clients who interact with Ethereum

blockchain. It aids the user to perform certain actions like transferring

ether from one account to another, write and read the data from any

smart contract, and most importantly it allows the user to create the

smart contracts. Web3.js provides JavaScript bindings to Ethereum,

which can then be used to build intuitive user interfaces using the

web stack. (fig 5)

Fig 7: web3.js interacting with a private blockchain via INFURA.

27

4.2.2 Meta Mask

Meta Mask is a cryptocurrency wallet that interacts with the Ethereum

network through software. Users can utilize a browser extension or a

mobile app to access their Ethereum wallet, which can further be

helpful in interacting with various other decentralized applications.

Meta Mask is responsible for managing the Ethereum wallet, this

wallet contains the user’s Ethers (or money) and allows the user to

send and receive Ethers through a DApp of interest.

Fig 8: meta mask user wallets

28

Fig 9: initial account balance before transaction

4.2.3 Infura

Infura is an Ethereum node cluster that allows the users to run an

app without having to set up an Ethereum node or wallet of their

own. Infura does not manage user’s private keys for security

reasons, thus it cannot sign transactions on user’s behalf. With

simple, dependable access to Ethereum and IPFS, Infura delivers the

tools and infrastructure that allow developers to simply move their

blockchain application from testing to scaled deployment. Infura is

most preferred platform by the developer due to its user-friendly

features such as instant availability (no syncing or complicated

setups required.), IPFS and Ethereum interface.

29

Fig 10: infura as a developer friendly platform.

4.2.4 Ropsten

Ropsten ETHs are used for testing purposes. When developers are

building DApps, or experimenting on the network, to avoid losing

money paying real ETH for transaction fees and smart contract

deployments, it is better to use the Ropsten Network. Ropsten

Ethereum, also known as “Ethereum Testnet”, are as the name

implies, a testing network that runs the same protocol as Ethereum

does and is used to testing purposes before deploying on the main

network (Mainnet).

4.2.5 Truffle And Ganache

Truffle is an Ethereum Blockchain Development Environment,

Testing Framework, and Asset Pipeline. While Ganache is a

personal Ethereum Blockchain for testing smart contracts. It allows

the developer to deploy contracts, construct applications, run tests,

30

and execute other operations for free.

Using Truffle, a developer can introduce the Smart Contracts into

web apps, and develop front end for decentralized apps. These days,

Truffle is one of the most frequently used IDEs for Ethereum

Blockchain.

4.2.6 Arduino IDE

An Arduino IDE or Arduino software has a text editor to write code,

a text console that usually indicates possible errors or work progress,

a toolbar with several commands and buttons that performs specific

functions and offer a specific menu. It is usually interfaced with a

hardware component called Arduino UNO. This is basically a

microcontroller.

For our project we did not use Arduino UNO because only specific

libraries from Arduino IDE were needed for integration with ESP32.

4.2.7 Remix IDE

It is an integrated development environment (IDE) used for writing,

compiling and debugging of a certain solidity code. Remix provides

a platform for deployment, development and administration of

smart contracts for blockchains such as Ethereum. It requires

solidity code. Where solidity is a programming language that is a

high-level and contract oriented. It is a modernized version of

various other programming languages such as C++, Python and

Javascript.

4.2.8 ESP32 module

ESP32 module is the only hardware component we have used in our

project so far. It is a microcontroller with an integrated Wi-Fi

31

module and a Bluetooth module. ESP32 can be interfaced with a

larger system (laptop in our case) to provide for wi-fi and Bluetooth

functionality with the help of SPI/SDIO and I2C / UART interface.

It is a fairly cheap microcontroller considering its functionalities.

Fig 11: ESP32 wi-fi module

32

Chapter 05

IMPLEMENTATION OF SMART CONTRACT

OVERVIEW

In this chapter, we will go in detail of our suggested system for performing peer-to-

peer energy transactions via blockchain, which eliminates the need for a central

authority figure. This part will take readers through all of the stakeholders, their roles

and duties, as well as the system's design and technical specifics. We begin by

providing an overview of the problem and a detailed solution in section 5.1. Section

5.2 delves into the stakeholders, their obligations and rights, as well as the system's

ecosystem. Then, in section 5.3, various technical specifics about the blockchain and

other modules are discussed. The system's architecture, smart contract functionality,

access control rights, microgrid, smart meters are all described in Section 5.4.

33

5.1 GENERAL DESCRIPTION OF PROBLEM AND

SOLUTION

We have used Infura to implement the solution we propose for a peer-to-peer energy

distribution system. Infura is an Ethereum client that assists in the setup of a fully

functional Ethereum node for private systems. Infura provides Web3 tools and

infrastructure to developers and businesses in a simple and dependable manner.

. In our system, we must address the following issues:

1. The entire system is controlled by a single central authority.

2. Payment mechanisms that are transparent to avoid demurrage and power

hoarding.

3. The system's load balancing.

To resolve "i", we created a permissioned blockchain that is governed by a

group of regulators. Section 5.3.1 outlines the duties and obligations of

regulators. To ensure "ii," we would employ a micro-grid for energy storage

after a producer advertises it, making it impossible for the producer to back out

of the arrangement. Checks for maximum power storage in the grid at a certain

time will be added for "iii."

5.2 STAKEHOLDERS AND ECOSYSTEM

This section outlines who the system's stakeholders are and what their roles are.

The system's users include:

• Regulators

• Producers

• Consumers

5.2.1 regulators

Regulators are the entities that would aid in the system's stearing. Our system

will have numerous regulators rather than simply one. Regulators' roles

34

include: • establishing market regulations.

• Assisting and overseeing the transactions

• Changing the number of producers and consumers.

• Adding new blocks to the network by mining.

• Smart contracts can be modified to improve the rules and trade methods.

The regulators are not in charge of facilitating commerce between parties or

determining prices. They attempt to eliminate disagreements by automating the

trade process.

5.2.2 producers

In our system, a producer is someone who generates electricity using their own

solar panels. The producers would use the smart contract to make "

availableEnergyAdvert" transactions.

5.2.3 consumers

Energy produced and advertised by producers can only be purchased by

consumers through " RequestForEnergy" transactions.

These roles are mutually exclusive, meaning that a person can only be a

member of one of them. For physical energy transfer, all of these entities are

connected to the micro-grid. IInfura's entire nodes will be used by regulators to

mine puposes. Consumers and producers do not require full nodes; instead,

they will use the ESP32 protocol.

5.3 ENERGY TRANSACTION

Users should be able to make sell and buy transactions using their smart metres

without having to deal with haggling or late transmissions as a result of the desired

outcome. Certain components must be in place for this to happen. The system is

described in full in this part, along with all of its needs.

35

 5.3.1 Permissioned Blockchain and PoW

Instead of setting up an node on the personal computer we used 'Infura' an

online service to which runs your virtual node and facilitates requests using an

API. After signing up an api key is denoted to the user like this one

4f1102ebebfc4001990187303598a4e3 . User can send curl request to the

infura node using this url.

"https://mainnet.infura.io/v3/4f1102ebebfc4001990187303598a4e3". Infura

can be connected to Ethereum mainnet, Ropsen, Rinkeby, Kovan, Gorli,

Polygon Mainnet, and each net having different mainnet id and curl request

url. "https://network.infura.io/v3/INFURA_KEY" Many each network works

on different different mechanism like Rinkeby uses 'Proof of Authority' while

many others uses 'Proof-of-Authority'. Proof-of-authority (PoA) is a consensus

technique that relies on trusted and well-known validators to generate blocks

and hence give computational power to a network. It uses a Byzantine Fault

Tolerance (BFT) algorithm with identity as a stake to enable comparably

speedier transactions.

We're using Proof-of-Work here with Ropsten network. Proof of work (PoW)

is a type of zero-knowledge cryptographic proof in which one party (the

prover) establishes to others (the verifiers) that a specified amount of

computational effort has been invested. Following that, with no effort on their

part, verifiers can authenticate this spend.

5.3.2 Smart Contracts

We need to move forward with electricity trading after our private Infura node

is up and operating, mining is started, and nodes are connected to each other.

We'll need smart contracts for this. A smart contract is similar to a legal

contract in that it automatically executes when specific circumstances are

satisfied. One of the parties must initially commit to the deal. The other parties

then evaluate the offer and respond if they want to participate in the

transaction. The terms and conditions are handled by the smart contract code.

36

The parties involved just need to provide a few specifications as part of their

offer.

We created smart contracts with multiple functions for our system. Each

function has its own set of access rights constraints. Role-based access rights

have been incorporated in our system. The smart contract specifies three roles:

• Regulators

• Producers

• Consumers

5.4 ARCHITECTURE AND DATA FLOW

This section illustrates the data flow that occurs when energy trade on the blockchain

begins. At this stage, we're assuming that anyone interested in becoming a Producer or

a consumer will provide their blockchain private address, as well as their physical

address, to one of the regulators. Regulators will then append the participant's key to

their individual physical address for the purpose of power distribution. The following

block diagram shows the hierarchy of users with the functions they can perform.

Fig 12: block diagram of users’ function

37

5.4.1 Adding and Removing Users

Only the smart contract's owner, i.e. the address that deployed the smart

contract over the blockchain, has the right to add and remove regulators.

Any of the addresses mentioned in the regulator's role can add or remove

producers and consumers. These addresses lists are dynamic and can be

changed at any time. Prior to the commencement of trade, these roles do not

need to be statically initialized.

5.4.2 Sell Advertisements

The contract's AvailableEnergyAdvert() function correlates to the it's

SellAdvert transactions. This function is only available to the addresses

assigned to the "Producers" role. This function accepts two arguments: the

advertised energy units and the producer's suggested minimum price per unit.

 AvailableEnergyAdvert() energy_produced proposedprice

The seller will send the advertised energy to the grid after invoking this

function. As a result, if a buyer replies to this SellAdvert, the manufacturer will

be unable to back out of the contract. This is how the problems of power abuse

and dishonesty would be addressed.

Furthermore, the seller is required to pay a tax to the authorities based on the

following formula:

tax = total_price - producer_share; (i)

where

producer_share = energy_requested*producer_share_per_unit; (ii)

producer_share_per_unit = 0.5 gwei

total_price = energy_requested*price_for_each_unit (iii)

while price_for_each_unit varies according to the no of requested units of

energy

To assist the seller, we designed the contract so that the price per unit increases

by ten percent of the seller's minimum price proposal every hour. A SellAdvert

38

has a three-hour lifespan after which the electricity is returned to the supplier.

If the producer so desires, they can re-advertise those units.

5.4.3 Buy Offers

The smart contract's RequestForEnergy() function refers to the BuyOffer

transactions. Only the addresses defined in the "Consumers" role have access

to this function. The consumer chooses a producer from whom they want to

acquire energy after looking through the transactions pool and viewing the live

SellAdverts. This function requires four parameters: the quantity of energy

units the customer wishes to purchase, the date SellAdvert was launched, the

producer's minimum proposed price, and the producer's address.

RequestForEnergy() energy_requested adverttime proposedprice

p_address

This function computes the price per unit based on the number of days since

SellAdvert was introduced. This function can only be used by the consumer if

their current balance is more than the amount due to the producer and the

amount of tax due to regulators. The regulators would then allow electricity to

be transferred from the microgrid to the consumer after the tokens were

transferred.

5.4.4 Micro Grid

The microgrid would be physically connected to all of the members'

consumers and producers. Energy trading would take place on a blockchain

that is connected to all peers, but an electric connection would be made

between the microgrid and the clients. Depending on the capacity of the grid,

there is a limit on how much energy can be stored at any particular time.

We assumed that the grid's minimum storage capacity was 1 KWh and its

maximum storage capacity was 1000 KWh at the time of development.

If the microgrid's storage capacity is already 990 KWh, the producers will not

be able to place a SellAdvert. This would help to avoid grid storage being

39

overloaded for an extended period of time. The following flow chart shows the

working mechanics of the system.

Fig 13: Flowchart of the Micro grid system

5.5 PAY-AS-YOU-GO PEER TO PEER PAYMENT

Another smart contract that allows micropayments has been built to allow the

consumer to make repeated purchases. This agreement establishes a one-way payment

channel between the consumer and the producer. There are three steps to it:

1. The customer finances and activates the smart contract, which includes the

recipient's address, the contract's validity period, and the total money to be escrowed.

2. The consumer seals the messages with his private key and sends them to the

producer after each purchase, indicating the contract's address, the total amount due up

to this point, and his signature.

3. At the end of the transaction, the producer closes the payment channel by presenting

the consumer's last signed message. The contract checks the signature and transfers

the funds to the producer, with the remainder going back to the customer.

40

On the blockchain, only the transactions required for Steps 1 and 3 would be recorded.

The rest of the communication will take place off-chain. It can be done through emails

or through social media. A specific consumer's contract would only work between him

and the identified producer. It is taken care of by the contract's access controls, and no

other address can intervene.

When the producer believes the exchange is complete, they can control the channel. If

a producer fails to terminate the channel before the validity period expires, the

consumer can close the channel themselves, reclaiming any escrowed funds.

41

Chapter 06

DEPLOYMENT OF SMART CONTRACTS VIA ESP32

Overview

Nobody can deny that blockchain and the Internet of Things are complex technologies.

However, due to the growing reputation of managed platform services, they are

becoming easier to implement in recent years. The technical components of

blockchain and IoT have become far less scary thanks to these managed services.

While many of the technical obstacles have been overcome, there are still some

significant obstacles to overcome. In our system, ESP32 module provides a bridge

between Blockchain world and physical world.

42

6.1 ESP32 MODULE

ESP32 with it compact, simple and easy to program design has opened doors to new

innovations with minimum effort and lesser external circuitry.

6.1.1 Hardware Specifications

The ESP32 is a line of low-cost, low-power system-on-a-chip microcontrollers

that include built-in Wi-Fi and dual-mode Bluetooth. The ESP32 series

contains built-in antenna switches, RF baluns, power amplifiers, low-noise

receive amplifiers, filters, and power-management modules, as well as a

Tensilica Xtensa LX6 CPU in dual-core and single-core versions.

6.1.2 Why ESP32

The ESP32 is a low-cost Wi-Fi module that is ideal for a variety of Internet of

Things (IoT) projects. These modules provide GPIOs and support for a number

of protocols, including SPI, I2C, UART, and others. They also come with

wireless networks, which distinguishes them from other microcontrollers such

as Arduino. That means you can quickly operate and monitor gadgets through

the internet at a reasonable cost.

6.2 BLOCKCHAIN WITH IoT

The adoption of Blockchain in conjunction with IoT could be the answer to IoT

challenges. Data is saved in a distributed ledger that is spread across multiple devices

connected by peer-to-peer networks. No device can alter this data, hence it is

unalterable. It will be easier to track billions of IoT devices using blockchain, which

will allow for distributed processing and coordination. Blockchain's decentralized

method will eliminate single points of failure, which is a problem with IoT's present

centralized approach, the cloud. Cryptographic techniques used in blockchain help

preserve private data generated by Iot devices.

43

6.3 EXECUTION OF PROPOSED SYSTEM

We need to move forward with electricity trading after our private Infura node is up

and operating, mining is started, and nodes are connected to each other. With

everything ready at its place, we are ready to perform our execution over ESP32.

Each party involved has to perform its part of deal on an automatic system. This

execution consists of the following steps:

 6.3.1 Addition and Removal of Users

In the very start owner is the only user. This system follows a kind of hierarchy

where only owner has the ability to add or remove a regulator and only

regulator has the ability to add or remove a producer and/or a consumer. The

owner has no authority over addition or removal of customer or producer.

However owner gets a part of Customer-Producer trade as tax.

Fig 14: hierarchy of Users

44

Every transaction, either it is smart contract deployment, request for asserts or

SellAdvert, comes with a cost. This cost is known as gas fee. Gas fee

contribute to the Ethereum network's security. We prevent actors from

spamming the network by requiring a price for each computation performed on

it. Each transaction is required to specify a limit on how many computing steps

of code execution it can consume in order to prevent unintentional or hostile

endless loops or other computational waste in code. Prices are expressed in

gwei, with 1 ETH equaling 1* 109 (1,000,000,000) gwei. A 21,000 gas

transaction would cost 21,000 * 5 = 105,000 gwei at a gwei pricing of 5.

(0.000105 ETH). The following figure shows a Ropsten Test Network window

for generating a new contract. Here the Gas fee is 0.00271 gwei. The owner

has to pay this amount to proceed with the transaction.

Fig 15: Ropsten Test network; new contract window

45

 6.3.2 Deployment of smart contract

Once the addresses are assigned for producer, consumer and regulator, our

smart contract is ready for deployment.

Fig 16: Remix: Deployment of smart contract

 6.3.3. User hash

Once the smart contract is deployed, the producers and consumers come into

action. For this particular instance, we have pre-coded values for transaction.

Once the transactions are carried out we can see them in the form of hash

functions (as seen in the serial monitor capture below, Fig 17).

 6.4.4. Transfer Completion

Once the transaction is completed, the said amount is taken away from the

Customer and transferred to the producer in exchange for the energy. Owner

gets a part of Customer-Producer trade as tax (as described in equation iii). The

following figure dhows the increase in the account balance of Producer and

Owner while decrease in Consumer account balance after the deployment of

46

the smart contract. These are seen through Meta Mask Google Chrome

browser extension.(Fig 18)

Fig 17: Hash Functions of Producer and Consumer

Fig 18: Change in Account balances after the deployment of the smart contract

47

6.4 Verification method

JSON RPC API
Each Ethereum node exposes a JSON RPC API which can be used to interact with blockchain.

JSON-RPC is remote procedure call (RPC) protocol. It can be used over http. We can make

http requests to remote Ethereum node for different function calls. A simple http request

through curl for retrieving a block is as follows
curl -H "Content-Type: application/json" --data

"{\"jsonrpc\":\"2.0\",\"method\":\"eth_getBlockByNumber\",\"params\":

[\"latest\”, true],\"id\":1}"

https://ropsten.infura.io/v3/828e910904b04c86b10cdbc01ed11dbf

In order to call different function, we change the value of “method”. JSON RPC

Documentation lists all the available methods and relevant examples. The interesting thing

here is the “params” variable. The value of params is used to control different parameters.

For example, in above case it is used to obtain “latest” block.

The example below calls a smart contract function.
curl -H "Content-Type: application/json" --data

"{\"jsonrpc\":\"2.0\",\"method\":\"eth_call\",\"params\":["{\"from\":

\"0xc320aB81E4cb3BC91DAaC417e3EB0db9Ae5A3723\",\"to\":\"0x82157c33a5B

6D4E34b72C13Cb913F5db21f9704B\",\"data\":\"0x8771e19a0000000000000000

00000000c320ab81e4cb3bc91daac417e3eb0db9ae5a3723000000000000000000000

0004d00000000000000000000000000

0000000000000000000000000000000000003f\"}",\"latest\"],\"id\":1}"

https://ropsten.infura.io/v3/828e910904b04c86b10cdbc01ed11dbf

In this case params contains another JSON object inside it. The role of each pair inside

params is described below:

to: The address of smart contract

from: the address which is calling the function. In simple calls which don’t change the state

of blockchain it is optional.

data: Data field is most important field. It contains information about the function name

and function arguments. This information is encoded using Contract ABI Specification.

Contract ABI Specification
Suppose we want to call the following function which is defined inside a smart contract
function baz(uint32 x, bool y) public pure returns (bool r) { r = x > 32 ||

y; }

The data field will be obtained as follows

• 0xcdcd77c0: The Method ID. This is derived as the first 4 bytes of the Keccak hash of

the ASCII form of the signature baz(uint32,bool).

• 0x0045:

the first parameter, a uint32 value 69 padded to 32 bytes

• 0x0001:

the second parameter - boolean true, padded to 32 bytes

In this way we can call different smart contract functions.

However, things are different when we want to call functions which modify the state of

blockchain or in simply which change values of variable. Instead of eth_call method we

now need eth_sendRawTransaction. This method takes signed transaction hash as

value inside params and broadcasts it to the network.

https://eth.wiki/json-rpc/API
https://docs.soliditylang.org/en/v0.5.3/abi-spec.html

48

Transaction Signatures
In order to sign a transaction, we need to generate transaction data. The transaction data

comprises of the following entries

nonce: It is an integer value which serves as a counter. It keeps track of number of

transactions sent from an address.

gasPrice: Gas is the fee required to perform a transaction on the network. gasPrice tells the

amount the sender is willing to pay for the transaction.

gasLimit: It is maximum amount of gas the sender is willing to pay.

to: The address where transaction is being sent.

from: The address of sender

value: Hexadecimal value. It is needed when we want to send eth to an address.

data: the data field is calculated using the process explained in above section.

This data is encoded using RLP encoding which is standard in Ethereum which is signed using

private key and sent to the network using eth_sendRawTransaction. This function

returns the transaction hash.

Generating Transaction Signatures
The signing and signature verification process in Ethereum uses Elliptic Curve Cryptography.

The signature is generated by following equation

𝑆𝑖𝑔 = 𝐹𝑠𝑖𝑔(𝐹𝑘𝑒𝑐𝑐𝑎𝑘256(𝑚), 𝑘)

Here

Fsig is signing algorithm

m is RLP encoded transaction data

Fkeccak256 is the keccak256 hash function

k is the private key

Sig is the resulting signature. The resulting signature has two pars r and s.

𝑆𝑖𝑔 = (𝑟, 𝑠)

The process of generating signature works as follows

• An ephemeral private key q is generated so that actual private key is protected. This

is done to ensure that actual private key cannot be calculated by attackers.

• From q ephemeral public key Q is generated using G and q. r value is then the x

coordinate of Q. From there s value is calculated as follows

𝑠 ≡ 𝑞−1(𝐾𝑒𝑐𝑐𝑎𝑘256(𝑚) + 𝑟 ∗ 𝑘) (𝑚𝑜𝑑 𝑝)

Verifying Transaction Signatures
In order to verify the signature, we need r and s, serialized transaction data and public key

corresponding to the private key that signed the transaction. The process of verification works

as follows

• Check all inputs are valid

• Calculate 𝑤 = 𝑠−1𝑚𝑜𝑑 𝑝

• Calculate 𝑢1 = 𝐾𝑒𝑐𝑐𝑎𝑘256(𝑚) ∗ 𝑤 𝑚𝑜𝑑 𝑝

• Calculate 𝑢2 = 𝑟 ∗ 𝑤 𝑚𝑜𝑑 𝑝

• Finally calculate the point on the elliptic curve 𝑄 = 𝑢1 ∗ 𝐺 + 𝑢2 ∗ 𝐾 (𝑚𝑜𝑑 𝑝)

• If x coordinate of point Q is equal to r we can conclude that the transaction was signed

by authorized person.

49

Here

p is prime order of elliptic curve

K is the signer’s public key

G is the elliptic curve generator point

m is the transaction data that was signed.

ESP32
Esp32 is a low-cost microcontroller with integrated Wi-Fi and dual mode Bluetooth. Esp32 is

available at much lower cost than a Raspberry Pi. Most of the work done so far used

Raspberry Pi. Very little work is done on Esp32. There are few libraries available for

interfacing blockchain with Esp32 and they also lack proper documentation. In this work we

have this library. It had few bugs which were fixed. The entire process explained above –

making http request, signing transactions, sending transaction- is handled by the library under

the hood. For instance, the following code snippet calls a smart contract

function(checkLocation) using esp32:
void checkLocation(uint256_t latitude, uint256_t longitude,const

char *address)

{

 string contractAddrStr = LOCATIONCHECK;

 Contract contract(&web3, LOCATIONCHECK);

 string addr = address;

 string param =

contract.SetupContractData("checkLocation(address,uint256,uint256)"

, &addr,latitude,longitude);

 string result = contract.ViewCall(¶m);

 Serial.println(result.c_str()); //prints JSON RPC Response

 int permission = web3.getInt(&result); //Obtaining integer result

i.e either 1 or 0

 Serial.println(permission); //displaying result on screen

}

The code below calls a smart contract function which modifies a value on blockchain.
void changeOwner(const char *newOwner)

{

 string contractAddrStr = LOCATIONCHECK;

 Contract contract(&web3, LOCATIONCHECK);

 contract.SetPrivateKey(PRIVATE_KEY);

 string addr = MY_ADDRESS;

 unsigned long long gasPriceVal = 24000000000ULL;

 uint32_t gasLimitVal = 3000000;

 uint32_t nonceVal = (uint32_t)web3.EthGetTransactionCount(&addr);

 Serial.println(nonceVal);

 uint256_t valueStr = "0x00";

https://github.com/AlphaWallet/Web3E

50

 string transferAddr = newOwner;

 string p =

contract.SetupContractData("transferToOriginPCustoms(address)",

&transferAddr);

 string result = contract.SendTransaction(nonceVal, gasPriceVal,

gasLimitVal, &contractAddrStr, &valueStr, &p);

 Serial.println(result.c_str());

 string transactionHash = web3.getString(&result);

 Serial.println(transactionHash.c_str());

}

The following function in the sketch uploaded to Esp32 takes all the relevant data and sends

the transaction to Ethereum network.
string result = contract.SendTransaction(nonceVal, gasPriceVal,

gasLimitVal, &contractAddrStr, &valueStr, &p);

Inside the source code for the function SendTransaction, first a signature is generated as

shown

string Contract::SendTransaction(uint32_t nonceVal, unsigned long

long gasPriceVal, uint32_t gasLimitVal,

 string *toStr, uint256_t

*valueStr, string *dataStr)

{

 uint8_t signature[SIGNATURE_LENGTH];

 memset(signature, 0, SIGNATURE_LENGTH);

 int recid[1] = {0};

 GenerateSignature(signature, recid, nonceVal, gasPriceVal,

gasLimitVal,

 toStr, valueStr, dataStr);

 vector<uint8_t> param = RlpEncodeForRawTransaction(nonceVal,

gasPriceVal, gasLimitVal,

 toStr,

valueStr, dataStr,

 signature,

recid[0]);

 string paramStr = Util::VectorToString(¶m);

 return web3->EthSendSignedTransaction(¶mStr, param.size());

}

Currently the issue with this library is that it requires private key in plain text. This problem

needs to be fixed in later works.

51

Chapter 07

EVALUATION OF PROPOSED SOLUTION

52

Chapter 08

CONCLUSION AND FUTURE WORK

Overview

This is final chapter of this report that sums up the entire project in minimum amount

of words. It gives a complete overview of the achieved goals. The chapter grows

further by mentioning the possible future works of the project and its scope in coming

years. It discusses the future of blockchain in power sector and its impact on pre-

existing technologies.

53

8.1 CONCLUSION

Electricity is the most essential need in our daily lives in today’s world. We require

energy to charge our cell phones and laptop computers, without which we would be

completely shut off from the rest of the world. Electricity is required to power hospital

machines, air conditioning, factories, and other facilities. Because of the ever-

increasing need for electricity, natural resources that can be used to generate energy

are in constant demand. After almost a century of utilizing fossil fuels to generate

electricity, humanity has now begun to recognize the massive devastation that fossil

fuel use has wreaked on the planet.

Renewable energy, unlike fossil fuels, can be used at the individual level, even if

authorities are falling behind in their grid set-ups.

Trading, on the other hand, is a major issue in peer-to-peer scenarios. Fortunately, we

can use blockchain to create a distributed trading system.

This project is a comprehensive implementation of the block chain-based smart energy

system. The Ethereum network has produced a thorough prototype consisting of a

single consumer and a single producer with a control system and a detailed block

chain. This can easily be used for multiple producers and consumers. The ether

cryptocurrency is used to pay for the energy units purchased by the consumer from the

producer.

After a successful ether transaction on the Ethereum private network, the system sends

a signal to the controller of the electricity grid where both the consumer and the

producer are physically linked. When the controller receives a signal indicating that

the transaction was completed and the number of units to be transferred, it opens the

consumer load's physical connection.

The units consumed are continuously measured by the controller. After the energy

units have been successfully transferred, the controller will turn on the consumer link.

8.2 LIMITATIONS

1)Problem: ESP32 cannot run an entire node on its own. To send transaction to

54

network we have to become one of the full node.

Solution: Send and receive transactions through an API. Which is infura in this case.

2) Problem: If we use an API like infura, we need to have to share our private key for

the node to sign transaction and send it ahead.

Solution: Instead of sharing private key with infura over http request. We sign the

transaction ourselves. It means that the signature provides the authentication that the

transaction is send by the owner this particular public address without actually having

the private key

3) Problem: Geth is more secure option since new we can use it to run a private

network but does not allow any RPC calls on the node because if geth do allow such

RPC calls, user can even read all the private keys. This can be counted as a breach of

privacy.

Solution: To solve such a problem, Infura was used instead of geth

8.3 FUTURE WORK

Future development on this subject could go in a number of different areas.

• Bidding for the energy units that a seller has offered. By adjusting prices in

accordance with market changes, all parties concerned can gain more benefits.

• Infura’s web3.js addon allows for automatic transactions. This would aid in

the automatic sale and purchase of units by both prosumer and consumer.

To complete the end-to-end trade, the electric meter and solar panel must currently be

merged with the system. To better optimize the system, a script and accompanying

database can be used to track transactions from the transaction pool from the geth

console.

55

REFERENCES:

World wide web

[1] how net metering works in Pakistan, https://zerocarbon.com.pk/how-net-

metering-works-in-

pakistan/#:~:text=Net%20metering%20Pakistan%20is%20an,hours%20or

%20at%20times%20when

Research Papers

[2] A. Onder Gur, S. Oksuzer and E. Karaarslan, ‘Blockchain Based Metering and

Billing System Proposal with Privacy Protection for the Electric Network’, 2019 7th

International Istanbul Smart Grids and Cities Congress and Fait (ICSG) IV page 206.

[3] Kvaternik, K., Laszka, A., Walker, M., Schmidt, D., Sturm, M., lehofer, M., &

Dubey, A. (2017). Privacy-Preserving Platform for Transactive Energy Systems. c.

http://arxiv.org/abs/1709.09597

[4] Rahman, M. A., Rashid, M. M., Shamim Hossain, M., Hassanain, E., Alhamid, M.

F., & Guizani, M. (2019). Blockchain and IoT-Based Cognitive Edge Framework for

Sharing Economy Services in a Smart City. IEEE Access, 7, 18611–18621.

https://doi.org/10.1109/ACCESS.2019.2896065

[5] Xu, Q., He, Z., Li, Z., & Xiao, M. (2019). Building an Ethereum-Based

Decentralized Smart Home System. Proceedings of the International Conference on

Parallel and Distributed Systems - ICPADS, 2018-December, 1004–1009.

https://doi.org/10.1109/PADSW.2018.8644880

[6] Zhang, C., Wu, J., Zhou, Y., Cheng, M., & Long, C. (2018). Peer-to-Peer energy

trading in a Microgrid. Applied Energy, 220(June), 1–12.

https://doi.org/10.1016/j.apenergy.2018.03.010

https://zerocarbon.com.pk/how-net-metering-works-in-pakistan/#:~:text=Net%20metering%20Pakistan%20is%20an,hours%20or%20at%20times%20when
https://zerocarbon.com.pk/how-net-metering-works-in-pakistan/#:~:text=Net%20metering%20Pakistan%20is%20an,hours%20or%20at%20times%20when
https://zerocarbon.com.pk/how-net-metering-works-in-pakistan/#:~:text=Net%20metering%20Pakistan%20is%20an,hours%20or%20at%20times%20when
https://zerocarbon.com.pk/how-net-metering-works-in-pakistan/#:~:text=Net%20metering%20Pakistan%20is%20an,hours%20or%20at%20times%20when
http://arxiv.org/abs/1709.09597
https://doi.org/10.1109/ACCESS.2019.2896065
https://doi.org/10.1109/PADSW.2018.8644880

	BLOCKCHAIN BASED SECURE METERING SYSTEM
	ABSTRACT
	Fig 1: World gross electricity production, by source, 2018
	Instead of setting up an node on the personal computer we used 'Infura' an online service to which runs your virtual node and facilitates requests using an API. After signing up an api key is denoted to the user like this one 4f1102ebebfc4001990187303...
	We're using Proof-of-Work here with Ropsten network. Proof of work (PoW) is a type of zero-knowledge cryptographic proof in which one party (the prover) establishes to others (the verifiers) that a specified amount of computational effort has been inv...
	5.3.2 Smart Contracts
	JSON RPC API
	Contract ABI Specification
	Transaction Signatures
	Generating Transaction Signatures
	Verifying Transaction Signatures

	ESP32

